CUDA Programming Applications

overview and proposals performance evaluation in content based image retrieval

ارزیابی کارآیی بازیابی یکی از مسائل بحرانی در امر بازیابی تصویر محتوا محور به شمار می رود،روش های مختلفی برای اندازه گیری کارآیی ابداع و توسط محققین استفاده شده اند ، درoverview and proposals performance evaluation in content based image retrieval در مورد مزیت و مختصر از معیارهای اندازه گیری که در حال حاضر استفاده می شود بحث شده است.

تفاوت بین IR(Information Retrieval) و CBIR(Content Base Image Retrieval)واضح است از آنجایی که محققان IR دهها سال با مشکلات ارزیابی مواجه بوده اند برخی از راه حل های آنها می تواند برای CBIR مورد استفاده قرار گیردبا وجود اینکه تفاوتهایی هم بین آنها وجود دارد.چندین نکته بایستی به منظور ساخت مجموعهتصاویر مرسوم بررسی شوند:1-مجموعه بایستی رایگان و بدون محدودیت کپی رایت باشد بنابراین تصاویر می توانند در وب جای گیرند و قابل دسترس عموم باشند بزرگترین مسئله ساخت یک مجموعه با تصاویر متمایز کافی در موضوعات مختلفی از قبیل ماشین ، چهره ، تصاویر پزشکی و ... می باشد.

روشهای ارزیابی کارآیی :

1- ارزیابی کاربری یک روش کاملا متعامل است که کاربر می تواند مستقیما موفقیت جستجو را داوری نماید.

2- اندازه گیری تک ارزشی :رتبه بهترین تطبیق مورد ارزیابی قرار می گیرد.

3- نمایش گراف

Illumination Invariant Face Recognition using SQI and Weighted LBP Histogram

شناسایی چهره در شرایط روشنایی مختلف هنوز بعنوان یک مسئله باز حل نشده می باشد، یکی از چالشهای موجود در دنیای واقعی برای سیستم تشخیص چهره تغییرات روشنایی است، در[Illumination Invariant Face Recognition using SQI and Weighted LBP Histogram]یک رویکرد جدیدی در مقابل تغییرات روشنایی بر پایه SQI و هیستوگرام LBP وزندار معرفی شده است، در این سیستم، کارآیی سیستم با استفاده از مقادیر مختلف سیگما در SQI در تستهای مختلف بالا رفته است، علاوه بر اینکه استفاده از دو عملگر LBP یکنواخت چند ناحیه ای برای استخراج ویژگی همزمان بکار رفته است و سیستم را در برابر تغییرات روشنایی قویتر ساخته است.این رویکرد اطلاعات تصویر را از سطوخ متفاوت محلی و سراسری جمع می نماید.

ارائه یک شکل جدیدی از الگوهای باینری محلی به منظور طبقه بندی بافت تصویر

طبقه بندی بافت تصویر نقش بسیار مهمی در بینایی ماشین و پردازش تصویر دارد. اولین و مهمترین مرحله در طبقه بندی بافت تصویر، استخراج ویژگی از تصویر میباشد. تاکنون روش های بسیار زیادی برای استخراج ویژگی از تصاویر بافتی ارائه شده اند اما از میان روش های موجود الگوهای باینری محلی، در شکل اصلی و بهبودیافته خود، به دلیل سادگی در پیاده سازی و استخراج ویژگی های مناسب با دقت طبقه بندی بالا، مورد توجه بسیاری از متخصصان این زمینه قرار گرفته است. شکل اصلی الگوهای باینری محلی هرچند از نظر پیاده سازی بسیار ساده است، اما زمانی که شعاع همسایگی افزایش یابد پیچیدگی محاسباتی بالایی دارد. شکل بهبودیافته الگوهای باینری محلی نیز به الگوهای همگن برچسبهای متمایز و به تمام الگوهای غیر همگن یک برچسب یکسان انتساب می دهد و این امر، طبقه بندی تصاویری که دارای درصد بالایی از الگوهای غیر همگن می باشند را با مشکل مواجه می سازد. در[ارائه یک شکل جدیدی از الگوهای باینری محلی به منظور طبقه بندی بافت تصویر]، یک شکل جدید از الگوهای باینری محلی ارائه شده است که پیچیدگی محاسباتی آن نسبت به شکل اصلی الگوهای باینری محلی کمتر و دقت طبقه بندی آن نیز از شکل اصلی و بهبودیافته الگوهای باینری محلی بیشترمی باشد. روش ارائه شده در این مقاله نه تنها تصاویر با الگوهای همگن را به خوبی طبقه بندی می کند، بلکه در مورد تصاویری که دارای حجم بسیار بالایی از الگوهای غیر همگن می باشند نیز به خوبی عمل می کند. همچنین می توان با تغییر در بازه های شدت روشنایی، محلی یا سراسری بودن ویژگی ها را کنترل کرد.


مرجع:پاکدل مرضیه،تاجری پور فرشاد ،ارائه یک شکل جدیدی از الگوهای باینری محلی به منظور طبقه بندی بافت تصویر،مهندسی برق و کامپیوتر ایران ،شماره 11،سال 1392

روشی سریع دربازیابی تصاویر مبتنی بر محتوا با استفاده از ترکیب ویژگی لبه و رنگ

در [روشی سریع دربازیابی تصاویر مبتنی بر محتوا با استفاده از ترکیب ویژگی لبه و رنگ]رویکرد جدیدی برای بازیابی تصاویر مبتنی بر محتوا(CBIR) ارائه گردیده است. جهت استخراج ویژگی از دو ویژگی رنگ HSV و گرادیان لبه استفاده شده است. بدین صورت که ابتدا برای استخراج ویژگی لبه بر روی تصویر الگوی باینری محلی اعمال شده تا لبه های تصویر برجسته تر شوند سپس برروی تصویر حاصل از الگوی باینری محلی هیستوگرام گرادیان (SRF)که از مجموع دو اپراتور سوبل و رابرتز استفاده می کند تا زوایای افقی و عمودی و مورب را نمایش دهد استفاده می شود، جهت استخراج ویژگی رنگ با تبدیل فضای رنگ RGBبه فضای رنگ HSI و کمی سازی آن ویزگی رنگ بدست می آید.

1- استخراج ویژگی:

1-1:رنگ یکی از متداولترین و تعیین کننده ترین ویژگی دیداری در زمینه بازیابی تصویر است، چرا که نسبت به تغییرات مربوط به اندازه ،جهت ، دورنمایی و اغتشاش تصویر پایدار است.عمومی ترین روش در بازیابی رنگ تصاویر استفاده از هیستوگرام رنگ است که از مهمترین تکنیک های بازیابی تصویر بر اساس رنگ است.

اولین گام در تشکیل هیستوگرام رنگ،مشخص کردن فضای رنگ است. به صورت عمومی فرمت های مختلف تصاویر همچون GIF ، BMP و ... فضای رنگ RGB را در خود دارند. در صورت انتخاب این فضا محاسبات کمتری را خواهیم داشت اما مسئله قابل توجه یکنواخت نبودن از جهت ادراکی است. به همین دلیل ما در این مقاله فضای RGB را به فضای HSV تبدیل کردیم تا خاصیت یکنواختی ادراکی را شاهد باشیم. ابعاد تشکیلدهنده این فضا،رنگ را بر اساس رده (H) یا طول موج، درجه اشباع رنگ (S) و درجه روشنایی آن (V) تعریف میکنند. فضای مذکور یک فضای مخروطی است، که در آن :
١ . طول موج رنگ برابر زاویهی رنگ در برش دایره مخروط میباشد و در فاصله[0,2π] تعریف می شود، به صورتی که قرمز در زاویه صفر درجه، سبز در زاویه 2π/3 و آبی در زاویه4π/3 قرار گرفته که در انتها، دوباره به قرمزدر زاویه 2π باز میگردد.
٢ . درجه روشنایی رنگ معادل محور مرکزی مخروط است.
٣ . درجه اشباع رنگ برابر فاصله نقطه روی دایره تا محور مرکزی است به گونه ای که در نزدیکی محور، میزان غلظت کمتر است و رنگ مزبور به دسته رنگهای خاکستری میپیوندد.
H مولفه اصلی مورد استفاده در سیستمهای بازیابی است چرا که نسبت به تغییرات جهت تصویربرداری از شیئ یا منظره پایدارتر است. اما با این حال به تغییرات روشنایی به شدت حساس میباشد .
جهت تشکیل هیستوگرام رنگ پس از این فضا به طور خطی کوانتیزه میشود. بهدلیل اهمیتی که فضای H نسبت به سایر مولفه ها دارد، این مولفه به 16بازه و دو مولفه دیگر هر کدام به 4 بازه کوانتیزه میشوند. هیستوگرام رنگ تصویر با شمردن نقاطی که در هر بازه قرار می گیرند، محاسبه شده و به تعداد کل نقاط تصویر نرمالیزه میشود. بردار حاصل از نمایه سازی هر تصویر با استفاده از ویژگی هیستوگرام رنگ HSV ، یک بردار 256 بعدی است.




2-1:ویژگی لبه یکی از سودمندترین الگوریتم ها جهت مشخص کردن تغییرات پیکسل ها و طبفه بندی تصاویر مختلف است. در این مرحله در نهایت قصد بدست آوردن هیستوگرام زوایای گرادیان SRF را داریم. نکته متمایز این مقاله استفاده از عملگر الگوهای باینری محلی LBP به عنوان مرحله پیش پردازش است، به عبارت دیگر به جای آنکه بر روی تصویر خاکستری لبه یابی انجام شود بر تصویر حاصل از الگوریتم LBP ، لبه یابی انجام می شود.


مرجع:ذوالفقاری احمد،خسروی حسین، روشی سریع دربازیابی تصاویر مبتنی بر محتوا با استفاده از ترکیب ویژگی لبه و رنگ، هشتمین سمپوزیم پیشرفت های علوم و تکنولوژی- مشهد- آذر92

1 2 >>